Équilibres de phases de mélange
Table des matières

Table des matières

I – Équilibres liquide-vapeur de mélanges binaires : comportement expérimental 7

A. Diagramme d'équilibre isotherme ... 7
B. Lecture d'une lentille d'équilibre ... 9
C. Diagramme d'équilibre isobare ... 9
D. Azéotropie ... 9

II – Solution idéale 11

A. Définition .. 11
B. Équilibre liquide-vapeur d'une solution idéale .. 12
C. Fonctions d'état d'une solution idéale .. 13

III – Les écarts à l'idéalité 15

IV – Enthalpie libre d'excès de mélanges binaires 19

A. Quelques propriétés générales .. 19
B. Quelques expressions simples de l'enthalpie libre d'excès 20
 1. Équation de Margules à un paramètre ... 20
 2. Expression analytique du coefficient d'activité 21
 3. Expressions empiriques à deux paramètres ... 21
 4. SIMULATION : Trouver les paramètres qui permettent de mieux représenter le comportement d'un système binaire ... 22
C. Modèles de compositions locales .. 23
D. SIMULATION : Ajustement de paramètres sur des données d'équilibre binaire .. 25
 1. Extrapolation en température... 25
 2. Binaire à deux azéotropes ... 26
 3. Système fortement non-_idéal ... 26
E. UNIQUAC .. 26
F. Contributions de groupes : équation UNIFAC ... 28
Dans ce chapitre, nous nous intéresserons essentiellement aux équilibres de phases des mélanges fluides (liquides et gaz), et à leur modélisation ; cela nous conduira essentiellement à voir comment représenter les propriétés des phases liquides.
Équilibres liquide-vapeur de mélange binaires : comportement expérimental

A. Diagramme d’équilibre isotherme

Considérons un mélange binaire, c’est-à-dire formé de deux constituants, qui peuvent tous les deux se partager entre les phases liquide ou vapeur.
On a l’habitude (mais ce n’est pas impératif) de numéroter les constituants par ordre de volatilité décroissante. Le composé le plus volatile à l’état de corps pur est celui qui a le plus tendance à passer en phase vapeur, c’est-à-dire :
• celui qui, à température donnée, a la pression de saturation la plus élevée
• ou celui qui, à pression donnée, a la température d’ébullition la plus basse

L’équilibre liquide-vapeur d’un tel mélange peut être représenté par 4 variables intensives : la température T, la pression P, la fraction molaire du constituant 1 en phase liquide, x_1 et la fraction molaire du constituant 1 en phase vapeur, y_1.

Ces variables sont reliées par les deux équations d’équilibre, qui décrivent l’égalité des potentiels chimiques des deux constituants entre les deux phases :

$$\mu_1^{(L)}(T, P, x_1) = \mu_1^{(V)}(T, P, y_1)$$
$$\mu_2^{(L)}(T, P, x_1) = \mu_2^{(V)}(T, P, y_1)$$

Remarque
Remarquez au passage que le potentiel chimique du constituant 2 s’exprime en fonction de la fraction molaire du constituant 1 : cela ne doit pas vous troubler, puisque les fractions molaires ne sont pas indépendantes, $x_1 + x_2 = 1$ et $y_1 + y_2 = 1$.
On choisit donc l’une des fractions molaires, par exemple celle du constituant 1, pour
décrire la composition de chaque phase.

On a donc 4 variables reliées par 2 relations : on ne peut donc choisir indépendamment que deux variables pour qu’il y ait équilibre liquide-vapeur. On dit que la variance du système est égale à 2.

Remarque

Ce résultat se généralise à un système non réactif de c constituants pouvant se partager entre φ phases, on montre que la variance d’un tel système est :

\[ν = c + 2 - φ \]

Cela signifie en particulier que si on impose la température \(T \) d’un mélange binaire, la pression \(P \) d’équilibre liquide vapeur et la composition \(y_1 \) de la vapeur sont des fonctions de \(x_1 \). Ces fonctions se déterminent expérimentalement, elles sont caractéristiques du mélange considéré.

On a l’habitude de résumer ces deux graphiques en un seul, en traçant sur les mêmes axes la pression en fonction de \(x_1 \) (courbe de bulle) et la pression en fonction de \(y_1 \) (courbe de rosée). On obtient alors la "lentille d’équilibre isotherme".

Les deux courbes se rejoignent aux deux extrémités du diagramme :

- pour \(x_1 = 0 \) et \(y_1 = 0 \), on a l’équilibre liquide-vapeur du corps (2) pur, la pression d’équilibre est bien sûr la pression de saturation du corps (2) pur, soit \(P_2^{s}(T) \)
- pour \(x_1 = 1 \) et \(y_1 = 1 \), on a l’équilibre liquide-vapeur du corps (1) pur, la pression d’équilibre est donc la pression de saturation du corps (1) pur, soit \(P_1^{s}(T) \)

Cette lentille est un véritable diagramme de phase : soit un système de composition globale \(z_1 \), à la température \(T \) pour laquelle on dispose du diagramme et à la pression \(P \). On lui fait correspondre un point représentatif dans le diagramme, et le domaine dans lequel il se trouve nous renseigne sur l’état du système :

- si le point se trouve "au dessus" de la courbe de bulle (donc à pression élevée), le système est à l’état liquide
- si le point se trouve en dessous de la courbe de rosée (à basse pression), le système est vapeur
- si le point se trouve entre les courbes de bulle et de rosée, il y a équilibre liquide-vapeur ; les compositions des phases liquide et vapeur se lisent sur les abscisses correspondant aux courbes de bulle et de rosée à la pression considérée.
B. Lecture d'une lentille d'équilibre

On considère un mélange de méthanol (1) et d'eau (2), de fraction molaire globale en méthanol $z_1=0,5$. Ce mélange est maintenu à 50°C. La pression est initialement de 50kPa. On détend progressivement le mélange.

Question 1
À quelle pression commence-t-il à se vaporiser, quelle est la composition de la première bulle de vapeur ?

Question 2
À quelle pression termine-t-il de se vaporiser, quelle est alors la composition de la vapeur, et la composition de la dernière goutte de liquide ?

Question 3
Si le mélange est maintenu à une pression de 30 kPa, quelles sont les compositions de la vapeur et du liquide ? Quelle est la fraction vaporisée (nombre de moles en phase vapeur/nombre de moles total) ?

C. Diagramme d'équilibre isobare

De la même façon que l'on trace des diagrammes d'équilibre isothermes, on peut tracer des diagrammes d'équilibre isobares

- dans les diagrammes isothermes, la courbe de bulle (qui sépare le domaine diphasique du domaine liquide) est toujours au-dessus de la courbe de rosée : on favorise l'apparition de la phase liquide en augmentant la pression
- dans les diagrammes isobares, la courbe de bulle est par contre en-dessous de la courbe de rosée : on favorise la phase liquide en abaissant la température.
- en $x_1=y_1=0$, les deux courbes se rejoignent à la température d'ébullition du cours (2) pur à la pression considérée, en $x_1=y_1=1$ on trouve la température d'ébullition du corps (1) pur.

Remarque
Si les formes des diagrammes isothermes et isobares sont similaires (la lentille isobare étant "inversée" par rapport à la lentille isotherme), il n'y a pas de construction géométrique simple qui permette de passer de l'un à l'autre : ils ne contiennent pas la même information expérimentale.

D. Azéotropie

Définition
Un azéotrope est un équilibre liquide-vapeur tel le liquide et la vapeur aient la même composition.

La situation d'azéotropie est assez fréquente, et a d'importantes implications pratiques.
L'azéotrope est, par définition, un point de rencontre entre la courbe de bulle et de
rosée. Ces deux courbes ne se croisent pas (sur un diagramme isotherme, par exemple, la courbe de bulle reste toujours au dessus de la courbe de rosée), mais elles sont simplement tangentes l'une à l'autre.

On peut démontrer qu'un azéotrope est forcément un extremum commun des courbes de bulle et de rosée (donc que la tangente commune est horizontale).

- on parle d'azéotrope positif lorsque qu'il s'agit d'un maximum dans le diagramme isotherme (ou un minimum dans le digramme isobare).
- on parle d'azéotrope négatif s'il s'agit d'un minimum dans le diagramme isotherme (ou un maximum dans le diagramme isobare)

Les azéotropes positifs sont de loin les plus fréquents.

Quelques propriétés des azéotropes :

- Il n'est pas possible de séparer les constituants d'un mélange azéotropique par distillation liquide-vapeur : en effet, dans les conditions azéotropiques, les deux phases ont la même composition, des deux constituants ont la même volatilité (la même tendance à passer en phase vapeur)
- de part et d'autre de l'azéotrope en termes de composition, les volatilités relatives des constituants sont inversées : ainsi, dans un mélange propanol-eau à 10% molaire en propanol, c'est le propanol qui est le plus volatile (c'est lui qui passe préférentiellement en phase vapeur, la phase vapeur est plus riche en propanol que la phase liquide). Par contre, dans un mélange à 90% en propanol, c'est l'inverse, et l'eau apparaît comme plus volatile que le propanol.
- dans le cas d'un azéotrope positif, le mélange azéotropique bout à une température inférieure à la température de chacun des corps purs. On utilise parfois cette propriété pour vaporiser un solvant à basse température, en rajoutant un constituant avec lequel il forme un azéotrope.
Nous admettons que les phases vapeur sont des gaz parfaits : nous savons donc calculer le potentiel chimique ou la fugacité de n’importe quel constituant en phase vapeur.

Pour pouvoir représenter les équilibres liquide-vapeur, il faut encore être capable de représenter les potentiels chimiques ou les fugacités en phase liquide. C’est un problème sensiblement plus difficile que pour les gaz : les molécules constitutives d’un liquide sont proches les unes des autres, on ne peut donc ni négliger leurs dimensions propres par rapport à la distance moyenne entre molécules, ni négliger les interactions à distance entre molécules.

Nous commencerons par définir le concept de “solution idéale”, pour ensuite étudier les “écarts à l’idéalité” des solutions réelles.

A. Définition

Une solution liquide est dite idéale dans un domaine de composition si la fugacité de chaque constituant est proportionnelle à la composition, c’est-à-dire :

\[
\frac{f_i^{L, id}(T, P, \underline{x})}{f_i^{L, R}(T, P)} = \frac{x_i}{x_i^{(R)}}
\]

où \(R_i \) correspond à un état de référence, c’est-à-dire une composition de référence que l’on peut choisir indépendamment pour chaque constituant.

Le plus souvent (et nous nous limiterons à ce cas dans un premier temps), on choisit comme état de référence pour le constituant \(i \) du mélange, ce même constituant à l’état de liquide pur. On parle d’État de référence symétrique. On a alors :

\[
f_i^{L, id}(T, P, \underline{x}) = x_i f_i^{L, \text{par}}(T, P) \approx x_i P_i^{(s)}(T)
\]

Cette relation est très analogue à la relation qui donne la fugacité d’un constituant d’un
Solution idéale

gaz parfait :

\[f_i^{(V,gp)}(T,P,y) = y_i P \]

puisque \(P \) est la fugacité qu’aurait le corps pur \(i \) à l’état de gaz parfait dans les mêmes conditions de température et de pression.

B. Équilibre liquide–vapeur d’une solution idéale

Considérons un mélange binaire, qui forme une solution idéale en phase liquide, et un gaz parfait en phase vapeur. On cherche à déterminer les courbes de bulle et de rosée isothermes de ce mélange.

Il suffit pour cela d’écrire l’égalité des potentiels chimiques ou des fugacités des constituants du mélange entre les deux phases :

\[
\begin{align*}
 f_1^{(L, id)} &= f_1^{(V)} \Rightarrow x_1 P_1^{(x)} = y_1 P \\
 f_2^{(L, id)} &= f_2^{(V)} \Rightarrow x_2 P_2^{(x)} = y_2 P \\
 &\Rightarrow x_1 P_1^{(x)} + x_2 P_2^{(x)} = P
\end{align*}
\]

Cette dernière équation exprime la pression d’équilibre en fonction de la composition du liquide : c’est par définition l’équation de la courbe de bulle. On voit que la relation est linéaire : la courbe de bulle isotherme d’une solution idéale est une droite.

L’équation de la courbe de rosée s’en déduit, il suffit d’éliminer les compositions en phase liquide entre les relations d’équilibre :

\[
P = \frac{1}{y_1 P_1^{(x)}} + \frac{y_2}{y_2 P_2^{(x)}}
\]

c’est l’équation d’une branche d’hyperbole.

La plupart des mélanges réels s’écartent fortement du comportement idéal : leur courbe de bulle isotherme est loin d’être une droite. L’hypothèse de la solution idéale sert plutôt de base pour aller explorer les écarts à l’idéalité.

Remarque

S’il est justifié de considérer un gaz sous pression modérée comme un gaz parfait, l’hypothèse de la solution idéale ne s’applique qu’à un nombre très restreint de mélanges liquides.
C. Fonctions d'état d'une solution idéale

Puisque nous savons exprimer la fugacité d'un constituant d'une solution idéale, on en déduit le potentiel chimique de chaque constituant :

$$
\mu_i^{(L, id)}(T, P, \chi) = \mu_i^{(std)}(T) + RT \ln \frac{x_i f_i^{(L, pur)}(T, P)}{P^{(std)}}
$$

On calcule ensuite l'enthalpie libre molaire $g^{(L, id)} = \sum_{i=1}^{c} x_i \mu_i^{(L, id)}$, dont on dérive le volume (par dérivation par rapport à la pression), et l'enthalpie (via la relation de Helmholtz).

On obtient très facilement :

$$
g^{(L, id)}(T, P, \chi) = \sum_{i=1}^{c} x_i \left[\mu_i^{(L, pur)}(T, P) + RT \sum_{i=1}^{c} \ln x_i \right]
$$

$$
v^{(L, id)}(T, P, \chi) = \sum_{i=1}^{c} x_i v_i^{(L, pur)}(T, P)
$$

$$
h^{(L, id)}(T, P, \chi) = \sum_{i=1}^{c} x_i h_i^{(L, pur)}(T, P)
$$

$$
s^{(L, id)}(T, P, \chi) = \sum_{i=1}^{c} x_i s_i^{(L, pur)}(T, P) - R \sum_{i=1}^{c} x_i \ln x_i
$$

On retrouve en fait, pour la solution idéale, les mêmes relations entre les propriétés des corps purs et celles du mélange que pour un gaz parfait.

En particulier, lorsqu'on mélange à pression constante des liquides purs pour obtenir une solution idéale, le mélange se fait sans variation de volume ni effet thermique.

Cela ne signifie pas qu'une solution idéale est un gaz parfait (puisque c'est un liquide). On peut donner une interprétation de la très forte analogie qui existe entre solution idéale et gaz parfait de la façon suivante :

- dans un gaz parfait, les molécules n'interagissent pas à distance : les interactions entre deux molécules (i)–(i) et (i)–(j) sont donc identiques (et nulles)
- dans une solution idéale, les molécules interagissent à distance et par contact, mais les interactions entre les différents types de molécules du mélange sont identiques : les potentiels d’interaction entre deux molécules (i) et (i) et entre deux molécules (i) et (j) sont les mêmes, les volumes des molécules (i) et (j) sont similaires.

En fait, les mélanges liquides qui se rapprochent du comportement idéal sont ceux composés de molécules de structure et de tailles voisines, de telle sorte que les molécules ne se différencient que peu par leurs interactions. C'est ainsi que des mélanges d’hydrocarbures linéaires de longueurs de chaînes voisines (par exemple n-heptane et n-octane) ont un comportement très proche de l’idéalité. Il en va de même des mélanges d’alcools comme l’éthanol et le propanol.
Les écarts à l'idéalité

Définition

Pour rendre compte de la non-idéalité des mélanges liquides, on corrige l'expression de la fugacité d'un constituant d'un mélange par rapport au cas idéal (équation), en introduisant un coefficient d'activité y_i :

$$\frac{f_i^{(L, id)}(T, P, x)}{f_i^{(L, id)}(T, P)} = y_i \frac{x_i}{x_i^{(R)}}$$

Remarque

Par construction, y_i vaut l'unité dans l'état de référence choisi pour le constituant i.

Si on choisit comme référence pour chaque constituant son état de corps pur liquide, cette définition devient :

$$f_i^{(L)}(T, P, x) = y_i x_i f_i^{(L, pur)}(T, P)$$

avec $y_i = 1$ pour $x_i = 1$

Le coefficient d'activité y_i dépend de la température, de la composition, et, dans une moindre mesure, de la pression.

En exprimant le potentiel chimique du constituant i à partir de la définition de la fugacité, il vient :

$$\mu_i^{(L)}(T, P, x) = \mu_i^{(std)}(T) + RT \ln \frac{y_i x_i f_i^{(L, pur)}(T, P)}{p_i^{(std)}}$$

$$= \mu_i^{(L, pur)}(T, P) + RT \ln (y_i x_i)$$

$$= \mu_i^{(L, id)}(T, P, x) + RT \ln y_i$$

$\mu_i^{(L, id)}$ représentant le potentiel chimique qu'aurait le constituant i dans le même mélange, si ce mélange était idéal.
Les écarts à l'idéalité

Définition
Nous voyons apparaître dans l'expression du potentiel chimique d'un constituant d'un mélange non-ideal le produit $y_i x_i$, que l'on appelle l'activité a_i du constituant i du mélange.

En calculant l'enthalpie libre molaire $g = \sum x_i \mu_i$, on voit qu'elle s'exprime comme la somme de l'enthalpie libre molaire de la solution supposée idéale, et d'une enthalpie libre d'excès, qui représente les écarts à l'idéalité :

$$g(T, P, \underline{x}) = \sum_{i=1}^{c} x_i \mu_{i}^{(L, id)}(T, P, \underline{x}) + RT \sum_{i=1}^{c} x_i \ln y_i$$

$$g^{L, id}(T, P, \underline{x}) + g^{E}(T, P, \underline{x})$$

Définition
L'enthalpie libre molaire d'excès du mélange est définie comme :

$$g^{E}(T, P, \underline{x})=RT \sum_{i=1}^{c} x_i \ln y_i$$

elle représente la différence entre l'enthalpie libre de la solution réelle et l'enthalpie libre de la même solution, supposée idéale.

Connaissant l'enthalpie libre d'un mélange, on en déduit le potentiel chimique d'un constituant par dérivation :

$$\mu_{i}^{(L)}(T, P, \underline{x}) = \left(\frac{\partial G^{(L)}}{\partial N_i}\right)_{T, P, N_j}$$

$$= \left(\frac{\partial (N g^{(L)})}{\partial N_i}\right)_{T, P, N_j}$$

$$\mu_{i}^{(L, id)}(T, P, \underline{x}) + RT \ln y_i = \left(\frac{\partial (N g^{(L, id)})}{\partial N_i}\right)_{T, P, N_j} + \left(\frac{\partial (N g^{(E)})}{\partial N_i}\right)_{T, P, N_j}$$

En identifiant terme à terme les deux membres de cette équation, on trouve finalement :

Fondamental

$$RT \ln y_i = \left(\frac{\partial N^{(L)} g^{E}}{\partial N_i}\right)_{T, P, N_j}$$

Cette relation montre que les coefficients d'activité des constituant du mélange sont tous obtenus par dérivation d'une seule fonction enthalpie libre d'excès : ce ne sont donc pas des fonctions indépendantes les unes des autres.
En utilisant l'arsenal habituel des relations entre fonctions thermodynamiques, on peut définir un volume d'excès et une enthalpie d'excès par :

\[
v^{(L)}(T, P, \chi) = \sum_{i=1}^{c} x_i v^{(L,pur)}_i(T, P) + \nu^E(T, P, \chi)
\]

\[
h^{(L)}(T, P, \chi) = \sum_{i=1}^{c} x_i h^{(L,pur)}_i(T, P) + h^E(T, P, \chi)
\]

avec :

\[
\nu^E = \left(\frac{\partial g^E}{\partial P} \right)_{T, \chi}
\]

\[
h^E = -T^2 \left(\frac{\partial (g^E/T)}{\partial T} \right)_{P, \chi}
\]

- Le volume d'excès représente la différence entre le volume du mélange et le volume de la solution supposée idéale, qui est en fait égal à la somme des volumes des corps purs séparés. Le volume d'excès est presque toujours négligeable devant le volume du mélange. Par souci de simplification, nous le négligerons donc par la suite, ce qui revient à supposer l'enthalpie libre d'excès indépendante de la pression.
- L'enthalpie d'excès est la différence entre l'enthalpie du mélange et l'enthalpie de la solution supposée idéale, qui est en fait égale à la somme des enthalpies des corps purs. Elle correspond en fait à la chaleur qui est absorbée lors de l'opération de mélange à pression constante, pour maintenir la température constante. Certaines opérations de mélange sont exothermiques, ce qui correspond à \(h^E < 0 \), d'autres endothermiques (\(h^E > 0 \)).

Fondamental

Toutes les propriétés thermodynamiques d'un mélange réel peuvent être déduites de la connaissance des propriétés des corps purs et de la fonction \(g^E \).
A. Quelques propriétés générales

Considérons un mélange binaire, non idéal. L’état de référence pour chaque constituant est l’état symétrique (corps pur liquide à la température et la pression considérées). Nous représentons la composition de la solution par la fraction molaire x_1. Nous supposons (cf plus haut) que les propriétés du liquide, et en particulier l’enthalpie libre d’excès ne dépendent pas de la pression. Soit T température (constante).

La fonction enthalpie libre du mélange $g^E(T, x)$ doit alors pouvoir s’exprimer en fonction de la seule variable x_1.

Par définition :

$$
\frac{g^E}{RT} = x_1 \ln \gamma_1 + x_2 \ln \gamma_2
$$

Lorsque $x_1 \rightarrow 1$, $\gamma_1 \rightarrow 1$ et $x_2 \rightarrow 0$: g^E tend donc vers 0. On peut faire le même raisonnement lorsque $x_2 \rightarrow 0$.

La fonction g^E est donc nulle aux deux extrémités du domaine de composition.

Si on connaît la fonction $g^E(x_1)$ pour un mélange binaire à température constante, on peut en déduire le coefficient d’activité (par un très joli exercice de changement de variables sur des fonctions de plusieurs variables) :
Enthalpie libre d’excès de mélanges binaires

On en déduit la construction graphique des coefficients d’activité à partir de la connaissance de la courbe représentant g^E pour un mélange binaire.

On en déduit aussi une propriété utile du coefficient d’activité :

$$\lim_{x_1 \to 1} \frac{dy_1}{dx_1} = 0$$

c’est-à-dire que lorsque $x_1 \to 1$, le coefficient d’activité du constituant 1 tend vers 1 avec une pente nulle : il est donc extrêmement proche de 1.

B. Quelques expressions simples de l’enthalpie libre d’excès

1. Équation de Margules à un paramètre

Pour une mélange binaire, l’enthalpie libre d’excès est une fonction de x_1, définie sur $[0, 1]$ et nulle aux deux extrémités de ce domaine. La fonction la plus simple qui réponde à cette condition est :

$$\frac{g^E}{RT} = A_{12} x_1 x_2$$

A_{12} est un paramètre ajustable, que l’on détermine de façon à représenter au mieux les données expérimentales (en particulier d’équilibre liquide-vapeur). Ce paramètre représente, de façon macroscopique et très indirecte, l’existence d’interactions...
spécifiques entre molécules de natures différentes dans la solution. Cette expression a été proposée par Margules (équation de Margules à un paramètre).

2. Expression analytique du coefficient d'activité

Question

Pour une solution binaire dont l'enthalpie libre d'excès est représentée par l'expression
\[g^E / RT = A_{12}x_1 x_2 \],

donnez l'expression des coefficients d'activité \(\gamma_1 \) et \(\gamma_2 \).

3. Expressions empiriques à deux paramètres

L'expression de \(g^E \) simplissime que nous avons utilisée dans l'exercice précédent manque souvent de flexibilité pour représenter fidèlement le comportement de mélanges. On utilise plus souvent des expressions (très empiriques) à deux paramètres, par exemple :

- l'expression de Margules à deux paramètres :
 \[g^E / RT = x_1 x_2 (A_{12}^{(M)} x_1 + A_{21}^{(M)} x_2) \]
 pour laquelle les coefficients d'activité sont donnés par :
 \[\ln \gamma_1 = (2A_{12}^{(M)} - A_{21}^{(M)}) x_2^2 + (2A_{21}^{(M)} - A_{12}^{(M)}) x_2 \]
 \[\ln \gamma_2 = (2A_{21}^{(M)} - A_{12}^{(M)}) x_1^2 + (2A_{12}^{(M)} - A_{21}^{(M)}) x_1 \]

- l'expression de Van Laar :
 \[g^E / RT = \frac{A_{12}^{(VL)} x_1 A_{21}^{(VL)} x_2}{A_{12}^{(VL)} x_1 + A_{21}^{(VL)} x_2} \]
 les coefficients d'activité étant calculés par :
 \[\ln \gamma_1 = A_{12}^{(VL)} \left(\frac{A_{21}^{(VL)} x_2}{A_{12}^{(VL)} x_1 + A_{21}^{(VL)} x_2} \right)^2 \]
 \[\ln \gamma_2 = A_{21}^{(VL)} \left(\frac{A_{12}^{(VL)} x_1}{A_{12}^{(VL)} x_1 + A_{21}^{(VL)} x_2} \right)^2 \]

Dans ces expressions, les coefficients \(A_{12} \) et \(A_{21} \) sont ajustables. Ils peuvent dépendre de la température, exceptionnellement de la pression (s'il faut représenter des données dans un très large domaine de pression), mais ils sont indépendants de la composition.

Ce type d'expression fonctionne en général assez bien pour représenter le comportement de systèmes binaires, mais leur généralisation aux systèmes multi-constituants est malaisée.

4. SIMULATION : Trouver les paramètres qui permettent de mieux représenter le comportement d'un système binaire

Introduction

Ce paragraphe a pour objet de faire comprendre l'importance de la prise en compte des écarts à l'idéalité dans la modélisation de l'équilibre liquide-vapeur d'un système binaire.
Enthalpie libre d’excès de mélanges binaires

Considérons le mélange éthanol(1)-eau(2), pour lequel nous disposons de données d’équilibre isotherme, à 90°C.

Nous choisissons de représenter le comportement de la phase liquide par le modèle de Margules ou le modèle de Van Laar.

Si les paramètres A_{12} et A_{21} sont choisis, nous pouvons calculer, en fonction de la composition du liquide, la pression d’équilibre liquide-vapeur et la composition de la phase vapeur, en résolvant le système :

$$
y_1 x_1 p^{(s)}_1 = y_1 P
$$
$$
y_2 x_2 p^{(s)}_2 = y_2 P
$$

sachant que y_1 et y_2 sont donnés par leur expression analytique (dérivée du modèle choisi, cf le paragraphe précédent) et que les pressions de saturation des corps purs sont connues en fonction de la température.

Nous savons donc, à paramètres du modèle donnés, tracer la courbe de bulle (P en fonction de x_1) et la courbe de rosée (P en fonction de y_1), et nous pouvons superposer ces courbes aux points expérimentaux.

Le calculateur joint permet de tracer, à partir de paramètres choisis, la lentille d’équilibre et de la comparer aux données expérimentales, pour le mélange binaire éthanol–eau à 25°C (données isothermes). Le "jeu" est bien sûr de trouver les paramètres qui rapprochent le plus possible la lentille calculée des points expérimentaux. Ici, l’expression utilisée pour g^E est celle de Margules. Donner des valeurs aux paramètres, et cliquez sur "Calcul".

Simulateur : Équilibre liquide-vapeur

Quelques constatations que vous pouvez faire :

- si on laisse les paramètres à zéro, g^E est nul dans tout le domaine de compositions : on a donc une solution idéale (la courbe de bulle isotherme est une droite)
- si on choisit des paramètres trop grands (par exemple tous deux égaux à 3) le comportement modélisé devient erratique (courbe de bulle avec des extrema qui ne sont pas des azéotropes). Nous expliquerons plus tard ce comportement
- les paramètres qui conviennent sont à peu près $A^{(M)}_{12} = 1$ et $A^{(M)}_{21} = 1,5$.

Vous notez que, outre les lentilles d’équilibre, le programme fournit aussi une comparaison des enthalpies libres d’excès calculée et expérimentale.

En effet, chaque donnée d’équilibre (mesure simultanée de la température, de la pression, de la composition du liquide et de celle de la vapeur) doit vérifier les relations d’équilibre :

$$
y_1 x_1 p^{(s)}_1(T) = y_1 P
$$
$$
y_2 x_2 p^{(s)}_2(T) = y_2 P
$$

On peut donc en déduire, point par point, y_1 et y_2, puis l’enthalpie libre d’excès, dont on rappelle qu’elle est définie par : \[Jacques Schwartzentruber (EMAC)\]
Il est donc facile de comparer cette enthalpie libre d’excès "expérimentale" avec l’enthalpie libre d’excès calculée par le modèle.
On se rend bien compte que les paramètres qui permettent de bien faire "coller" l’enthalpie libre calculée sur l’enthalpie libre expérimentale sont aussi ceux qui permettent de bien représenter la lentille d’équilibre : l’information sur l’enthalpie libre d’excès se trouve dans les données d’équilibre liquide–vapeur.

L’intérêt de cette démarche de modélisation à partir de données expérimentales est :

• de prédire des équilibres liquide–vapeur dans des conditions non explorées par les études expérimentales, et de disposer de résultats plus cohérents que les données expérimentales elles-mêmes (puisque les mesures sont entachées d’erreurs)
• de disposer de procédures générales de calcul des équilibres (indispensables pour la conception et de dimensionnement des équipements de génie de procédé, par exemple pour le calcul de distillateurs)
• de prédire le comportement des mélanges vis-à-vis des réactions chimiques ou d’autres possibilités d’équilibres entre phases
• enfin, les "bons" modèles d’enthalpie libre d’excès permettent de prédire le comportement de mélanges multi-constituants à partir de la connaissance des seuls sous-systèmes binaires qui les composent.

C. Modèles de compositions locales

Les expressions de g^E que nous avons vues jusqu’à présent doivent être considérées comme totalement empiriques, et elles ne s’appliquent qu’à des mélanges binaires : leur généralisation aux mélanges multi-constituants est très malaisée.

Des considérations plus physiques sur la structure des mélanges liquides ont permis de proposer des expressions plus générales. Un concept très fructueux est celui de "compositions locales", selon lequel les molécules, à l’échelle microscopique, s’organisent en "cellules" dans lesquelles les compositions locales diffèrent, du fait des interactions à courte distance, des compositions globales dans le mélange.

Imaginons par exemple un mélange binaire, équimolaire, dans lequel les interactions entre les molécules (1) et (2) sont "plus répulsives" que les interactions entre molécules (1) et (1) ou les interactions entre molécules (2) et (2). Les molécules formeront alors des cellules dans lesquelles les molécules de même nature ont tendance à s’agglomérer pour exclure les molécules de nature différente : on a donc une composition locale de molécules (1) autour d’une molécule (1), x_{11} plus grande que la composition globale x_1 dans le mélange. Par contre, la composition de molécules (2) autour d’une molécule (1), x_{21} est plus petite que la composition globale de molécules (2), x_2.

Cette répartition non aléatoire des molécules dans chaque cellule est liée aux énergies d’interaction entre molécules ; dans la cellule centrée autour d’une molécule (1), g_{11} est le potentiel d’interaction entre deux molécules (1), et g_{21} le potentiel d’interaction entre une molécule (2) et une molécule (1) (noter que $g_{21} = g_{12}$). L’organisation des molécules dans cette cellule peut être représentée par une loi de type Boltzmann :
Enthalpie libre d’excès de mélanges binaires

Sans rentrer dans le détail des développements, nous citerons simplement, comme exemple des modèles de compositions locales, l’équation NRTL (Renon et Prausnitz, 1968), dont nous donnons directement la forme pour un mélange à c constituants :

\[
\frac{x_{21}}{x_{11}} = x_2 \exp \left[-\frac{(g_{21} - g_{11})}{RT} \right]
\]

où $G_{ji} = \exp (-\alpha_{ji} \tau_{ji})$ avec $\alpha_{ji} = \alpha_{ij}$ et $\tau_{ji} = \frac{g_{ji} - g_{ii}}{RT}$

Dans cette expression, on dispose de trois paramètres ajustables par binaire $(i)-(j)$: τ_{ij}, α_{ij}, α_{ji}. En fait, une valeur $\alpha_{ij} = 0,3$ convient dans la plupart des cas ; on utilisera $\alpha_{ij} = 0,47$ pour des binaires constitués d’un constituant apolaire et d’un composé ayant tendance à s’auto-associer, comme les alcools). On pourra donc la plupart du temps se limiter à ajuster τ_{ij} et τ_{ji} pour chaque binaire.

Le calcul des coefficients d’activité à partir de l’équation NRTL ne présente aucune difficulté particulière, même s’il est un peu laborieux, et conduit à :

\[
\ln y_i = \left(\sum_{j=1}^{c} \tau_{ji} G_{ji} x_j \right) + \left(\sum_{k=1}^{c} \frac{G_{ki}}{x_k} \right) \left(\sum_{l=1}^{c} \frac{x_l G_{li}}{\tau_{lj} G_{lj}} \right)
\]

L’équation NRTL permet de bien représenter le comportement de mélanges divers, même fortement non-ïdeaux. De plus, elle permet de "prédir" de façon relativement fiable le comportement des systèmes multi-constituants à partir de l’ajustement des paramètres binaires sur les seules données expérimentales binaires.

D. SIMULATION : Ajustement de paramètres sur des données d’équilibre binaire

À ce stade, nous pouvons commencer à comparer les modèles que nous avons déjà vus : Margules, Van Laar et NRTL. Le programme que nous allons utiliser fait appel à des données expérimentales d’équilibre liquide-vapeur pour quelques mélanges assez "emblématiques".

Le programme proposé permet, à paramètres fixés, de comparer une modélisation à des données expérimentales, mais il permet surtout d’ajuster les paramètres d’une
équation de g^E de façon à représenter au mieux les données expérimentales. On peut ainsi ajuster les paramètres sur un sous ensemble des données expérimentales disponibles (isothermes ou isobares sélectionnés), et tester ensuite ces paramètres ajustés pour la représentation d'autres données.

On peut aussi, pour chaque binaire traité, voir quel est le modèle qui est le plus efficace.

Pour tout calcul, il faut choisir un modèle, les valeurs des paramètres (ou indiquer les paramètres à ajuster) puis choisir les données que l'on veut représenter.

1. Extrapolation en température

On dispose de données assez nombreuses concernant l'équilibre liquide-vapeur du binaire éthanol-eau. Ce système abondamment mesuré permet d'illustrer ce que pourrait être la stratégie de détermination de données expérimentales sur un binaire inconnu. En effet, on cherche toujours à limiter le nombre de déterminations expérimentales (très onéreuses) tout en souhaitant avoir la meilleure représentation possible des équilibres dans un large domaine de températures et pressions.

Question

La question à laquelle nous essayons de répondre est donc la suivante : vaut-il mieux faire des mesures à basse température (ou à basse pression) pour extrapoler vers les hautes températures au moyen d'une modélisation, ou l'inverse ?

2. Binaire à deux azéotropes

Le système binaire benzène-hexafluorobenzène a la particularité de présenter deux azéotropes à deux compositions différentes, l'un positif, l'autre négatif.

Question

Cherchez à représenter les données expérimentales disponibles pour ce système (isobare à pression atmosphérique).

(lien vers le simulateur)

3. Système fortement non-ideal

Question

Cherchez à représenter les données disponibles pour le mélange méthanol-benzène

E. UNIQUCAC

Les quelques expressions proposées jusqu'ici (Margules, Van Laar, NRTL) sont largement suffisantes pour se familiariser avec la problématique de la représentation des équilibres liquide-vapeur sous pression modérée.

Dans la pratique, on utilise beaucoup aussi l'équation UNIQUAC décrite dans cette partie, et surtout l'expression en contributions de groupes UNIFAC, qui est basée sur l'expression UNIQUAC.

L'équation UNIQUAC (UNiversal QUasi-chemical Activity Coefficient) a été proposée par Abrams et Prausnitz (1975). L'expression de l'enthalpie libre d'excès fait intervenir deux termes :

- un terme combinatoire qui prend en compte des différences de taille entre

1 – http://boissiere.enstimac.fr/cosinus/elv.html

Jacques Schwartzentruber (EMAC)
molécules. Il fait intervenir deux paramètres de corps purs : le volume et l’aire de Van Der Waals (r_i et q_i).

- un terme résiduel, qui prend en compte les interactions entre molécules, et qui a la forme d’un terme de compositions locales. Il fait intervenir deux paramètres d’interaction par binaire (τ_{ij} et τ_{ji}).

Elle s’écrit :

$$g^E = g^{E, \text{comb}} + g^{E, \text{res}}$$

avec :

$$g^{E, \text{comb}} = \sum_i x_i \ln \left(\frac{\phi_i}{x_i} \right) + \frac{Z}{2} \ln \left(\frac{\theta_i}{\phi_i} \right)$$

$$g^{E, \text{res}} = -\sum_i q_i x_i \ln \left(\sum_j \theta_j \tau_{ji} \right)$$

$$\phi_i = \frac{r_i x_i}{\sum_i r_j x_j}$$

$$\theta_i = \frac{q_i x_i}{\sum_i q_j x_j}$$

Le nombre de coordination du réseau, Z, est pris égal à 10. On notera que le terme résiduel, qui représente les interactions énergétiques, fait intervenir les surfaces des molécules (ou leurs fractions surfaciques), ce qui exprime bien que ces interactions ont lieu par contact entre molécules.

L’équation UNIQUAC a des performances proches de celles de l’équation NRTL, mais avec un nombre de paramètres moindre.

F. Contributions de groupes : équation UNIFAC

Fondamental

Le concept de contributions de groupes repose sur l'idée que les propriétés d'une molécule se déduisent de façon additive de celles des groupes fonctionnels qui la composent.

En particulier, on suppose que les interactions entre deux molécules proviennent des interactions deux à deux des groupes qui les composent. L'avantage de ce concept est évident, puisqu'il suffit en principe de connaître les interactions entre groupes fonctionnels (relativement peu nombreux) pour être capable de prédire les interactions entre n'importe quelles molécules.

La plus utilisée des expressions de g^E fondées sur cette notion est l’équation UNIFAC.
Enthalpie libre d'excès de mélanges binaires

(UNIquac Fonctional group Activity Coefficient : Fredenslund et Prausnitz, 1975). Cette équation continue d'être régulièrement améliorée, et les paramètres remis à jour depuis cette date par l'équipe de Lyngby (Danemark).

Comme son nom l'indique, l'équation UNIFAC est dérivée d'UNIQUAC (cf plus haut). Chaque molécule dans le mélange est décrite en termes de groupes fonctionnels. Ainsi, la molécule de propanol est-elle constituée d'un groupe CH_3, d'un groupe CH_2 et d'un groupe OH. On considère ainsi quelque 80 groupes différents.

Parmi ces groupes, on conçoit que CH_3 et CH_2, par exemple, ne diffèrent que par leurs tailles, mais que leurs interactions énergétiques avec les autres groupes seront identiques. On constitue ainsi, quelque 40 groupes principaux; par exemple, le groupe principal CH_2, contient C, CH, CH_2 et CH_3; le groupe principal ACH (carbone dans un cycle aromatique), contient les groupes secondaires AC (carbone substitué) et ACH.

Pour chaque groupe fonctionnel élémentaire, on définit deux paramètres, R_k et Q_k, qui sont son volume et son aire (environ 2 fois 80 paramètres). On a besoin, en plus, de la matrice des paramètres τ_{kl} d'interaction entre groupes principaux (matrice 40 x 40).

Comme UNIQUAC, l'expression de l'enthalpie libre d'excès d'UNIFAC présente deux termes :

- le terme combinatoire a exactement la même forme que dans UNIQUAC. Simplement, les paramètres moléculaires r_i et q_i sont calculés par sommation à partir des paramètres des groupes fonctionnels R_k et Q_k.

- on remplace conceptuellement la solution réelle par la solution de groupes, obtenue en "cassant" chaque molécule en ses groupes fonctionnels. Les paramètres d'interaction entre groupes étant connus, il est facile de calculer le coefficient d'activité résiduel du groupe k dans la solution de groupes, soit I_k en utilisant le terme résiduel d'UNIQUAC pour la solution de groupes. On estime alors le coefficient d'activité de la molécule i par la relation (empirique) :

$$\ln \gamma_i = \sum_k v_k^{(i)} \left[\ln I_k - \ln I_k^{(i)} \right]$$

où $v_k^{(i)}$ est le nombre de groupes k dans la molécule i, et $I_k^{(i)}$ le coefficient d'activité du groupe k dans la solution de groupes obtenue à partir de la molécule i pure. Ce terme est nécessaire pour assurer que γ_i devient bien égal à 1 pour i pur.

Un gigantesque travail de régression de données d'équilibre liquide-vapeur a été entrepris pour compléter progressivement la matrice des paramètres d'interactions entre groupes principaux. Des mises à jour et des extensions sont publiées périodiquement. Bien que cette matrice ne soit actuellement remplie qu'à moitié à peu près, l'équation UNIFAC est utilisable pour représenter l'équilibre liquide-vapeur de nombreux mélanges. Son avantage principal est de ne pas demander à l'utilisateur final de déterminer des paramètres d'interaction spécifiques à son système; cela se paye naturellement par une précision moindre, mais souvent acceptable pour un pré-design de procédé de séparation.

L'équation UNIFAC permet effectivement de représenter convenablement un grand
nombre de systèmes. Elle autorise même la "prédiction" du comportement de systèmes pour lesquels il n'existe pas de données expérimentales, avec en général un assez bon degré de fiabilité. C'est donc une équation souvent utilisée pour modéliser les mélanges lors des étapes initiales de développement d'un procédé. Mais à partir du moment où on dispose de données expérimentales, il est préférable d'ajuster les paramètres d'un modèle sur ces données, on aura de toute façon une meilleure précision qu'avec UNIFAC.